Version of Record: https://www.sciencedirect.com/science/article/pii/S0304420320301122 Manuscript_aa8d93c609c69ebce50fc01f89508ef2

1	Distribution and concentration of soluble manganese(II), soluble reactive Mn(III)-L, and
2	particulate MnO_2 in the Northwest Atlantic Ocean
3	
4	Matthew R. Jones ^a *, George W. Luther III ^b , and Bradley M. Tebo ^a
5	
6 7	^a Division of Environmental and Biomolecular Systems, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA.
8 9	^b School of Marine Science and Policy, University of Delaware, 700 Pilottown Road, Lewes, Delaware, 19958, USA.
10	
11	*corresponding author: <u>matthew_r_jones@rocketmail.com</u>
12	
13	
14	
15	
16	
17	
18	
19	

20 Abstract

21 As manganese cycles between its three oxidation states, encompassing soluble and particulate 22 phases, it influences the biogeochemistry of organic carbon, nutrients, and many trace elements. 23 However, measurements of manganese distributions and speciation in the open ocean have 24 typically been based only on differentiating soluble (assumed to be manganese(II)) and 25 particulate (assumed to be manganese(III,IV) oxides) forms. We measured particulate oxidized 26 manganese (MnO_x, where $x \approx 1.8-2$), reactive soluble manganese(III) (soluble manganese(III)) 27 that forms a complex with desferrioxamine-B (Mn(III)-L_{DFOB})), and total dissolved manganese 28 (dMn_T; manganese(II) + Mn(III)-L_{DFOB}) in Northwest Atlantic offshore waters (10–2600 m). 29 Mn(III)-L_{DFOB} concentrations were from below the detection limit (0.008 nM) up to 0.76 nM and 30 measured throughout the water column with higher concentrations near the base of the euphotic 31 zone (~ 100 m), in the oxygen minimum zone (OMZ), and generally increasing from below the 32 OMZ into the bottom waters. MnO_x ranged from 0.19 nM to 3.52 nM in the water column. 33 Concentrations were high near the base of the euphotic zone where reactions of MnO_x with 34 organic material are the likely source of the Mn(III)-L_{DFOB} observed there. Elevated MnO_x was 35 also occasionally found in deep waters likely due to turbidity layers resulting from sediment 36 resuspension. Mn(III)-L_{DFOB} accounted for up to 45% of the dMn_T and up to 74% of the total 37 oxidized manganese (Mn(III)- L_{DFOB} + MnO_x) in different regions of the water column. Mn(III)-38 L_{DFOB} contributed 10–20% of the generally uniform total dissolved manganese concentration in 39 the deep ocean. Both soluble and particulate oxidized forms of manganese (Mn(III)-L and 40 MnO_x) are a significant component of the deep water manganese pool and likely play a 41 prominent role in oceanic redox chemistry and organic carbon re-mineralization.

43 **1.0 Introduction**

44 Within the environment, particulate manganese(III,IV) oxide (MnO_x, where $x \approx 1.8-2$) is one of 45 the strongest oxidants, yet our understanding of the behavior of manganese in aquatic systems is 46 incomplete. The MnO_x/manganese(II) redox couple has a pivotal reactive intermediate oxidation 47 state (manganese(III); Davies, 1969), through which most manganese-reducing and -oxidizing 48 reactions occur (Luther, 1990). These redox reactions accompany reversible changes between 49 insoluble and soluble forms. The recycling of MnO_x is the critical process in the manganese 50 cycle as it directly impacts biogeochemical reactions. The MnO_x mineral has an efficient surface 51 area that oxidizes organic carbon. While oxidizing organic material, MnO_x produces 10-times 52 more low molecular weight organic acids than iron oxides (Chorover and Amistadi, 2001). 53 During formation, MnO_x scavenges nutrients (Yao and Millero, 1996) and trace elements 54 (Murray, 1975). Oxidation of organic carbon by MnO_x can break down high molecular weight 55 material to low molecular weight compounds. Low molecular weight organics are more 56 bioavailable (Søndergaard and Middelboe, 1995) and may lead directly to CO₂ formation 57 through bacterial consumption (Sunda and Kieber, 1994) or they may be further oxidized to CO₂ 58 abiotically (Chang Chien et al., 2009). The low molecular weight carbon concomitantly 59 stabilizes manganese(III) in reactive organic complexes (Mn(III)-L; Jones et al., 2019b; Madison 60 et al., 2013; Oldham et al., 2017a). Redox reactions occur below the euphotic zone and result in 61 new MnO_x production and particle formation, which significantly enhances the oceanic 62 sequestration of carbon (Boyd et al., 2019). Moreover, manganese oxides can intercalate up to 63 20% w/w organic carbon (Estes et al., 2017; Johnson et al., 2015). 64

65 2017b, 2015), occurs at the suboxic/anoxic interfaces of sediments (Madison et al., 2013;

⁶⁴ The pivotal Mn(III)-L species is present in estuarine systems (Jones et al., 2019b; Oldham et al.,

66	Oldham et al., 2019) and is found in variable but high concentrations in anoxic basins (Dellwig
67	et al., 2012; Schnetger and Dellwig, 2012; Trouwborst et al., 2006). Manganese(III) is also
68	present in open ocean waters (Jones et al., 2019a; Thibault de Chanvalon and Luther, 2019).
69	However, because the methods to sensitively measure Mn(III)-L at sub-nanomolar
70	concentrations have not, until recently, been available, there are no comprehensive
71	measurements for open ocean waters. Here we apply two newly developed analytical techniques
72	(Jones et al., 2019b, 2019a) for sensitive measurements of depth profiles of Mn(III)-L and MnO _x
73	concentrations in the oxygenated waters of the Northwest Atlantic Ocean. We show that there
74	are significant concentrations of Mn(III)-L in seawater and that this species is pervasive and
75	persistent. We cannot yet propose the dominant formation pathway for Mn(III)-L because
76	formation occurs following the oxidation of manganese(II) or reduction of manganese(IV).
77	However, we propose that the presence of Mn(III)-L is an indicator of an active manganese
78	cycle.

79 2.0 Methods

80

2.1 Locations and sampling

81 Offshore Atlantic locations (Fig. 1 and Table 1) in 2013, east from the Chesapeake Bay, and in 2014, east from Delaware Bay, were visited by the research vessel Hugh R Sharp. In 2013, three 82 83 Conductivity-Temperature-Depth sensor profiles were cast. Station A1 (37 07.84 N, 073 19.72 84 W) sampled from 698 m to the surface, Station A2 (37 18.45 N, 073 23.79 W) sampled from 825 85 m to the surface, and at Station A2 (37 18.32 N, 073 24.03) there was an additional deep water 86 sampling (2032 m). In 2014, two CTD casts were deployed. Station B1 (38 17.40 N, 072 43.70

W) sampled from 2602 m to the surface, and Station B2 (38 14.96 N, 072 45.27 W) sampled
from 449 m to the surface. Continuous oxygen measurements were made during each cast.

89 All plastic ware, including sampling tubing (attached to the Niskin bottles), sampling bottles, 90 centrifuge tubes, filter holders and syringes used for sampling were cleaned through two 91 sequential washes: 3% micro90 detergent (1 week), 2.4 M AR grade HCl (1 week). Sampling 92 bottles were stored containing 2.4 M trace-metal grade HCl. Between washes, sampling 93 equipment was rinsed a minimum of three times with DI. During use, the polysulfone filter units 94 were cleaned through brief multiple rinses (n = 3) of 1.2 M trace-metal grade HCl followed by 95 DI. The 0.2 µm Whatman track etched polycarbonate filters were soaked in 1 M HCl for one 96 week before rinsing in deionized water and storage in deionized water. Seawater samples were 97 collected using a rosette system (12 × 12 L Niskin PVC bottles). For deployment, Niskin bottles 98 were flushed with seawater as they remained open on descent during each cast. Samples were 99 collected directly from the Niskin bottles into 500 mL polycarbonate bottles, being filled to the 100 brim (625 mL) after filling and rinsing three times. Samples were stored in the dark at 4°C, and 101 the whole sample filtered (625 mL through 45 mm \times 0.2 µm Whatman Nuclepore track-etched 102 polycarbonate membranes) within 20 min. All polysulfone filtration units and sample tubes were 103 rinsed three times, either with the sample or filtrate, as required. Samples for soluble fractions of 104 manganese were processed once the filtrate was available. The filters for the analysis of MnO_x 105 were immediately processed, and the spectrophotometric analysis completed within 2–4 h.

- 106
- 2.2 Analytical
- 107

2.2.1 Particulate oxidized manganese [MnO_x]

108 The method to analyze the sample for MnO_x (Jones et al., 2019a) used the highly specific 109 colorimetric probe leucoberbelin blue (LBB; Merck) (Altmann, 1972). This method has proven 110 successful for measuring MnO_x in estuarine (Jones et al., 2019b; Oldham et al., 2015) and 111 seawater samples (Jones et al., 2019b). Briefly, each filter membrane plus 2 mL of LBB reagent 112 was placed in a 5 ml LDPE tube. The LBB reagent was 0.04% LBB in 1% Acetic acid (Merck) subsequently diluted 50-fold by 18.1 M Ω deionized water. The samples were occasionally 113 114 agitated for 2-4 hours before measurement in a World Precision Incorporated (WPI) 100-cm 115 liquid wave capillary cell (LWCC) connected through optical fiber cables to an Ocean Optics 116 USB2000 spectrophotometer with a halogen light source (HL-200-FHSA). The absorbance at 117 624 nm corresponds to the blue-colored oxidized LBB maxima. If required, a baseline correction 118 calculated from the slope of the linear regression between the absorbance at 480 and 700 nm was 119 applied. The calibration standard was potassium permanganate. Strictly speaking, LBB measures 120 the oxidizing equivalents of manganese and the computed MnO_x concentration derives from the 121 oxidation state of +IV. Based on the LBB oxidation stoichiometry, if the MnO_x is computed as 122 MnO_2 but contains 10% manganese(III) it introduces an error of -5% in the estimate of MnO_2 . To account for the difference in the oxidation state of the manganese from the standard 123 124 (permanganate, +VII) a factor of 2.5 was applied. The error on the LBB measurement was taken 125 from the relative standard deviation of the standards ($\leq 2\%$), as this was higher than the error on 126 the repeat measurements of the sample. The analytical range for standards within the 100-cm 127 LWCC was 10 to 400 nM and the limit of detection was 6.7 nM which, when corrected for the 128 volume passed through the filter, was 0.022 nM.

129

130

2.2.2 Processing manganese(III) [Mn(III)-L] and total dissolved manganese [dMn_T] samples

131 Mn(III)-L was extracted and concentrated from 50 mL of the filtrate as a complex with the 132 siderophore desferrioxamine-B [DFOB; Mn(III)-DFOB]. The added DFOB outcompetes the 133 ambient ligands stabilizing reactive manganese(III) and weak-siderophore-complexed 134 manganese(III). We operationally define this extracted fraction as Mn(III)-L_{DFOB} (Jones et al., 135 2019b). DFOB is a strong manganese(III) ligand (log $K_{COND} = 13.2$ in seawater (Luther et al., 136 2015); $\log K_{[Mn(IIDHDFOB+]} = 28.6 \pm 0.5$ in 0.1M NaCl (Duckworth and Sposito, 2005a)). The 137 chromatographic extraction technique, coupled to a flow-injection analysis spectrophotometry 138 quantification method successfully measured Mn(III)-L in estuarine and seawater samples (Jones 139 et al., 2019b). Briefly, a small volume of recently prepared DFOB (mesylate salt, Merck) in 140 deionized water was added to the 0.2 µm filtered seawater sample to a strength of 20 µM. The 141 sample was left for 5–20 minutes before passing through inline chromatography cartridges containing an Oasis Hydrophilic-Lipophilic-Balanced (HLB; Waters) stationary phase (primed 142 143 with 20 mM HEPES at pH 7.8) at 1 mL min⁻¹. The Mn(III)-DFOB complex that had 144 concentrated on the solid-phase extraction column was eluted with 4 mL of methanol (12.5-fold 145 concentration increase of the sample). The methanol was stored cold, -20°C, and on return to the 146 laboratory, the Mn(III)-DFOB in the methanol was reduced through the addition of a small 147 volume of 1.44 M hydroxylamine hydrochloride in deionized water that was added to a final 148 concentration of 14.4 mM, the sample was then acidified to < pH 2 with 6 M nitric acid (HNO₃; 149 Optima, Merck) for cold storage prior to analyses.

150 The samples for total dissolved manganese (dMn_T) analysis were retained in 15 mL pre-cleaned 151 centrifuge tubes. Immediately after processing, a small volume of 1.44 M hydroxylamine 152 hydrochloride in deionized water was added to a final concentration of 14.4 mM. Sample 153 acidification for preservation, through the addition of 6 M nitric acid (4 µL per 1 mL sample), occurred between two to four weeks later in the laboratory. The 2013 samples were stored for
eight months before analysis and the 2014 samples for three months. Manganese stability issues
affecting the concentration of soluble reduced manganese in the presence of acid plus a strong
reductant within the storage time-frames are not likely an issue (Jensen et al., 2020; Stumm and
Morgan, 1996). The estimated concentration of manganese(II) derived from the difference
between the concentrations of dMn_T and Mn(III)-L_{DFOB}.

160 Processing of deionized water blanks commenced immediately the Mn(III)-LDFOB and dMnT 161 sample processing had finished and the equipment rinsed. The deionized water blank was filtered 162 as per the sample, spiked with DFOB and passed over the HLB columns. The methanol eluate is 163 taken as the new Mn(III)-L_{DFOB} blank and processed as per a sample. After filtering deionized 164 water and adding hydroxylamine hydrochloride, the acidification of the dMn_T blank occurred as 165 *per* the sample. It is unlikely that seawater contains significantly high concentrations of strong 166 ligands capable of complexing manganese(III). Moreover, seawater is unlikely to contain 167 manganese species that are unreactive towards reduction by hydroxylamine hydrochloride 168 (Thibault de Chanvalon and Luther, 2019). Therefore, the manganese speciation methods likely 169 accounted for the majority of the available soluble manganese species.

170

2.2.3 Quantifying manganese(III) [Mn(III)-L] and total dissolved

171 manganese [dMn_T] samples

- 172 We used Tiron flow injection analysis spectrophotometry (FIA-S) to measure manganese
- 173 concentrations in the Mn(III)-DFOB in methanol and dMn_T seawater samples (Jones et al.,
- 174 2019b). The method includes a chromatographic extraction phase using the Toyopearl
- 175 AFChelate-650M stationary phase to remove the manganese from the methanol and the seawater

176 (Aguilar-Islas et al., 2006; Jones et al., 2019b; Milne et al., 2010). Isolation of the Mn(III)-DFOB 177 manganese from the methanol is required because, in a 100-cm LWCC, the direct measurement 178 of the Tiron semiquinone complex is affected by the absorbance of the methanol. In the presence 179 of H_2O_2 , manganese catalyzes the oxidation of the sulfonated catechol Tiron to its semiguinone 180 form (Scharff and Genin, 1975). To quantify the manganese concentration, we spectrophotometrically determined the absorbance at 424 nm, which corresponds to the 181 182 semiquinone complex that forms at pH > 9. The measurement of Mn(III)-DFOB (limit of 183 detection 0.008 nM using 1 mL and considering the 12.5-fold extraction protocol concentration 184 factor) and dMn_T (limit of detection 0.1 nM for 1 mL) as manganese(II) occurred on return to the 185 laboratory. The Tiron concentration during sample analysis was either 3.2 or 4 mM, and these 186 concentrations provide an analytical window < 0.24 to 10 nM, equivalent to a Mn(III)-L sample 187 range < 0.02 to 0.8 nM. The analyses of the National Research Council Canada SLEW-3 188 certified reference material ($S_p \sim 15$ and $dMn_T = 29.5 \pm 4$ nM; salinity written as S_p as per the 189 Intergovernmental Oceanographic Commission Thermodynamic Equation of Seawater – 2010) 190 verified the method for manganese. Replicate analyses using FIA-S yielded total manganese 191 concentrations of 29.4 and 30.0 nM. Triplicate analyses of samples, standards or blanks were 192 within a relative standard deviation of < 2%.

193 **3.0 Results**

194 Physicochemical upper water (< 500 m) depth profiles vary between the four stations sampled in

195 2013 (A stations) and 2014 (B stations) from the North Atlantic Ocean off the central east coast

196 of the U.S. (Figs. 2 & 3). In 2013, the upper water structure of Station A2 extended

approximately 100 m deeper than Station A1 (Fig. 2), though Station A2 profiles were similar if

198 corrected by this depth difference. At Station A1 and A2, homogenous high salinity water ($S_p >$

199 (35.6) extended from the surface to ~ 155 and 265 m, respectively, below which was the 200 pycnocline, wherein salinity decreased to $S_p = 35.0$ by 400–500 m (Fig. 2). Near-surface waters 201 were higher than 27°C and temperatures dropped rapidly to less than 17°C by 74 m. Following 202 the steep temperature decrease over the upper thermocline was a more gradual decrease to $6-7^{\circ}C$ 203 by 400–500 m (base of the pycnocline). It is in the higher salinity water where the percentage 204 oxygen saturation decreased towards its minimum (46% O_2 sat./126 μ M). This minimum 205 occurred in the pycnocline at 224 m and 324 m, Station A1 and A2, respectively (Fig. 2). The 206 difference in surface salinity structure at Station A is likely related to the presence of warm-core rings and transient surface eddies (Evans et al., 1985; Joyce et al., 1983) affecting the depth 207 208 profile of manganese (Bishop and Fleisher, 1987).

209 At Station B in 2014 (Fig. 3) the near-surface water salinity was 35.2 and salinity 210 increased with depth to the maximum, $S_p = 35.7$. Due to sampling, and at Station B1 the salinity 211 maximum was at 99 m whereas at Station B2 it was shallower at 36 m (Fig. 3). At the B Stations, 212 the pycnocline was indicated by salinity decreasing with depth from the maxima to 35.07 by 450 213 m. Near-surface water temperatures were ~ 3°C lower in 2014 than in 2013, with an average of 214 24.2°C. The steepest observed thermocline occurred as the temperature dropped to 14.3°C by 97 215 m; the temperature continued decreasing to 6.8°C by 450 m. The temperature and salinity of 216 Station B at 450 m were similar to Station A between 400–500 m. For the A and B stations at 217 400–500 m, salinity ranged from $S_p = 35.05$ to 35.08. As with Station A, the Station B 218 percentage oxygen saturation minimum (46% O₂ sat./130 µM) occurred within the pycnocline; at 219 Station B1 and B2, this minimum corresponded to a depth of 280 m.

220 In 2013, the surface water (~ 10 m) dMn_T was 10.8 ± 2.2 nM. In 2014, waters shallower 221 than 40 m had 6.7 ± 0.7 nM dMn_T and the concentrations were slightly higher (< 1 nM) at 10 m relative to ~ 40 m (Figs. 4 & 5). Station B had more samples taken in euphotic waters, and these samples show a decrease of ~ 4 nM in dMn_T between 40 and 60 m; by ~ 95 m there was 2.2 \pm 0.2 nM dMn_T. At Stations A1 and A2, below 70 m the average dMn_T was 3.6 \pm 0.9 nM with a maximum of 7.95 nM at 154 m (145 μ M O₂). At the B stations, from 95 m down to the waters influenced by the nepheloid layer (~ 2000 m), the average dMn_T was 1.7 \pm 0.5 nM, and the maximum was 2.7 nM at 371 m (151 μ M O₂). The nepheloid layer (2602 m) contained 26 nM

228 dMn_T while there was elevated dMn_T (3.97 nM) at 2004 m.

229 The MnO_x oceanic profiles (Figs. 2 & 3) generally show low concentrations in the sunlit surface waters due to photo-induced, organically-mediated reduction (Sunda et al., 1983) that 230 231 leads to high concentrations of dMn_T as manganese(II) (Figs. 4 & 5). There is high MnO_x (1.1 \pm 232 0.4 nM) around the base of the euphotic zone (~ 100 m) with concentrations decreasing with 233 depth to the core of the oxygen minimum zone OMZ (0.4 ± 0.1 nM; 300-400 m). At Station A 234 (2013), through the oxygen minimum and into intermediate waters, MnO_x decreased slightly 235 with depth (Fig. 2). Station B (2014) profiles (Fig. 3) were more complex. At the lower limit of 236 the OMZ (448 m), MnO_x increased to 2.6 \pm 0.4 nM, yet, below this region, the MnO_x 237 concentrations of Station B converged with that of Station A $(0.31 \pm 0.04 \text{ nM} \text{ between } 525-1201 \text{ mm})$ 238 m), even though sampled in different years. The Station A (2013) and Station B (2014) MnO_x 239 profiles diverged at 2000 m (Figs. 2 & 3); at Station A, MnO_x decreased to 0.19 nM whereas, at 240 Station B, MnO_x increased to 0.5 nM and continued increasing with depth to 3.5 nM MnO_x at 241 2600 m.

The average Mn(III)-L_{DFOB} at Station A was 0.14 nM (range: detection limit (0.008 nM) to 0.31 nM) and at Station B it was 0.43 nM (range: 0.17 to 0.83 nM) (Table 1). Mn(III)-L_{DFOB} profiles (Figs. 2 & 3) are atypical for a nutrient species initially sourced *via* atmospheric 245 deposition (Jickells et al., 2016). The expectation was that the Mn(III)-L_{DFOB} profiles would 246 follow that of manganese(II), high at the surface and concentrations decrease with depth as it 247 adsorbed onto sinking particles. Mn(III)-L_{DFOB} profiles, however, were more similar to nutrient 248 style profiles; these biologically controlled profiles exhibit low concentrations at the surface, a 249 subsurface maximum before concentrations decrease with depth. The Mn(III)-L_{DFOB} subsurface 250 maximum corresponded to the salinity maximum at all stations (Figs. 2 & 3). In contrast to many 251 trace nutrient species, Mn(III)-L_{DFOB} concentrations increased with depth (~ 0.07 nM per 1000 252 m); this increase was not linear as some variability occurred. Mn(III)-L_{DFOB} minima occurred in 253 sunlit surface water, at the oxygen minimum and during the transition from the OMZ to 254 intermediate waters. Mn(III)-L_{DFOB} maxima occurred at the base of the euphotic zone (~ 100 m), 255 below the oxygen minimum and at depth. From the lower OMZ boundary into the deeper water, 256 Mn(III)-L_{DFOB} concentrations increased by a factor of 2–3 with depth (Table 1, Figs. 2 & 3).

257 **4.0 Discussion**

258 The collection of samples for the measurement of particulate MnO_x, dissolved Mn(III)-259 L_{DFOB}, and dMn_T took place during the profiling of four Stations in the Northwest Atlantic 260 Ocean in August 2013 and 2014 (Figs. 2-5). These profiles, pairs of stations intended as repeat 261 profiles, traversed the regional OMZ off the margin of the continental shelf. In surface waters 262 shallower than 45 m, the concentrations of dMn_T were similar to Shiller (1997) but lower (7 ± 1 263 *versus* 35 ± 24 nM) than observed by Oldham et al. (2020) in August 2017 in surface waters (< 264 54 m) at a shelf station (OLH04; Fig. 1). However, the Oldham et al. (2020) MnO_x 265 concentrations $(1.1 \pm 0.9 \text{ nM})$, which were measured using the LBB technique, were similar to 266 our concentrations (1.0 ± 0.8) . In our surface water samples, manganese(II) was the dominant species (Table 1 and Figs. 2 & 3) in agreement with Sunda et al. (1983). However, this 267

observation is at odds with organic-rich near-surface waters (< 3 m) of the Saguenay Fjord in
Canada (Jones et al., 2019a), and NW Atlantic shelf waters (Oldham et al., 2020) where
manganese(III) was dominant. Nevertheless, throughout the water column of the Northwest
Atlantic, manganese(II) was generally the dominant species (Table 2, Figs. 4 & 5).

272 The intermediate and deep water dMn_T concentrations are approximately 10-times higher 273 than the 2011 winter measured US GEOTRACES NW Atlantic US continental shelf-slope 274 station (USGT11-01) and 3-4 times higher than USGT11-06 (Fig. 1; Wu et al., 2014). Our dMn_T 275 samples show a similarity in their concentration and depth profile to samples collected ~ 420 km 276 off the Japanese shelf-slope in the North West Pacific Ocean (Morton et al., 2019). The dMn_T 277 range in those Pacific samples, influenced by lateral inputs of material, was 0.7–6.3 nM with the 278 maximum at 650 m (106 µM O₂) (Morton et al., 2019). However, as approximately 60% of shelf 279 inputs of dMn_T will be lost within < 1000 km, lateral inputs of dissolved manganese are unlikely 280 to be far-reaching with respect to oceanic basin scale (Middag et al., 2011; Noble et al., 2012). Comparing our samples and GEOTRACES USGT11-06, the magnitude of dMn_T decrease 281 282 approximates the trend with distance from the shelf observed by Noble et al. (2012); our samples 283 were collected ~ 60 km off the slope and USGT11-06 ~ 500 km.

The measurement of MnO_x using the organic dye leucoberbelin blue occurs because of the ability of MnO_x to oxidize organics, in this case through a hydrogen atom transfer (Jones et al., 2019a; Luther et al., 2018). Although the LBB analytical method is conducted at ~ pH 4 to ensure a rapid and complete reaction, LBB reactivity is indicative of the ability of MnO_x to oxidize natural organic material. The LBB reaction thus mimics a fundamental step in a wide range of environmental processes (Mayer, 2011). Weakly complexed manganese(III) (log K_{COND} < 13.2 in seawater (Luther et al., 2015)) is also capable of oxidizing LBB through hydrogen atom 291 transfer and is present in marine and estuarine environments (Jones et al., 2019b). DFOB is a 292 strong ligand (log K_{COND} =13.2 in seawater (Luther et al., 2015)) that outcompetes weak ligands 293 stabilizing manganese(III) in complexes that oxidize LBB (Jones et al., 2019a). Therefore, the 294 DFOB technique provides a means of quantifying, at minimum, the LBB reactive pool of 295 manganese(III) (Jones et al., 2019a). The concentrations of MnO_x between 100 and 1000 m are 296 in good agreement (0.2-0.8 nM) with particulate manganese measurements from GEOTRACES 297 Stations USGT11-01 and USGT11-06 (Twining et al., 2015). The concentrations of Mn(III)-298 L_{DFOB} are similar to those measured in North Atlantic seawater ($S_p > 32$) flowing into the Gulf of 299 St. Lawrence, Mn(III)-L_{DFOB}, 0.73–1.1 nM (Jones et al., 2019b). In comparison, our mean 300 Mn(III)-L_{DFOB} concentration at the A Stations was 0.14 nM and at the B Stations, 0.43 nM, the B 301 Stations maximum was 0.83 nM and at 34 m. 302 At our location, manganese in the water column comes from atmospheric deposition

303 (Baker et al., 2016, 2006), fluxes from rivers and out of sediments from across the shelf (Burdige 304 and Komada, 2020; Charette et al., 2016), and horizontal transport of plumes of dissolved and 305 particulate manganese sourced from the shelf-slope (for example, Martin et al. (1985) and 306 Morten et al. (2019) and references therein). This region has high surface water dMn_T , attributed 307 to both reductive dissolution of manganese particles in aerosols and advection from the shelf 308 (Shiller, 1997). Inputs of dust are seasonal and are higher in summer than winter (Adams et al., 309 2012; Liu et al., 2008); similar observations have been reported for dissolved iron in surface 310 waters (Wu and Luther, 1996, 1994). The elevated dMn_T measured at Stations A and B relative 311 to GEOTRACES Stations may, therefore, be a combination of differences in seasonal 312 atmospheric deposition and lateral inputs from the shelf and continental slope as our stations are 313 close to the shelf.

314 4.1 Manganese redox cycling

315 Manganese(II) oxidation is most likely to occur as two single-electron transfers (Luther, 2010), 316 of which there are two pathways. The primary pathway is through microbial catalysis (Clement 317 et al., 2009; Emerson et al., 1982). The secondary pathway includes all abiotic reactions. 318 Generally, oxidation of manganese(II) by molecular oxygen is slow (Morgan, 2005; von Langen 319 et al., 1997) so other oxidants are required, for example, superoxide (Hansard et al., 2011), which 320 is likely prevalent in marine systems (Sutherland et al., 2020). When sufficient concentrations of 321 ligands are present, the first single-electron transfer results in a ligand stabilized manganese(III) 322 (Klewicki and Morgan, 1998; Kostka et al., 1995; Pakhomova et al., 2009; Parker et al., 2004; 323 Webb et al., 2005). If there are insufficient ligands, the oxidation of manganese(II) rapidly 324 produces MnO_x (Butterfield et al., 2013; Soldatova et al., 2017a, 2017b). 325 Manganese(III/IV) oxide particles may oxidize ambient dissolved organic matter 326 resulting in Mn(III)-L_{DFOB} and manganese(II) (Duckworth and Sposito, 2007, 2005b; Klewicki 327 and Morgan, 1999). Mn(III)-L_{DFOB} is produced because the oxidized low molecular weight 328 organic material (Sunda and Kieber, 1994) will form stable complexes with the concomitantly 329 produced manganese(III) (Jones et al., 2019a; Klewicki and Morgan, 1998; Launer and Yost, 330 1934; Magliozzo and Marcinkeviciene, 1997). We found that MnO_x was present throughout the 331 water column, albeit, generally at sub-nanomolar concentrations. This finding agrees with work 332 that used sequential extraction of particulate material collected at depth in the North Atlantic, 333 which showed that under normal atmospheric loading, MnO₂ accounts for 70% of oceanic 334 particulate manganese (Lam et al., 2015).

335 4.2 Manganese speciation at the base of the euphotic zone

336	High concentrations of MnO_x and $Mn(III)$ -L _{DFOB} occurred at the base of the euphotic
337	zone (Table 1 and Figs. 2 & 3), a depth approximately corresponding to the deep chlorophyll
338	maxima (DCM) (Cox et al., 1982; Cullen, 1982; Sunda and Huntsman, 1997). MnO ₂ (MnO _x , 1.1
339	\pm 0.4 nM) formation commonly occurs in the DCM (Sunda and Huntsman, 1988). At the DCM,
340	sinking phytoplankton help to produce elevated nutrients (Huisman et al., 2006) and a relatively
341	dense bacterial community, which respires organic material (containing oxidized manganese in
342	photosystem-II), conditions also leading to manganese(III) formation/stabilization. Since the
343	DCM is iron-limited (Hogle et al., 2018), the formation of Mn(III)-L will exacerbate iron
344	limitation as manganese(III) provides direct competition with iron(III) for stabilization by
345	siderophores (Luther et al., 2015). For example, manganese(III) binds to siderophore
346	hydroxamate motifs (Parker et al., 2004) with a higher affinity than iron(III), and the
347	concentration of manganese(III) $(0.41 \pm 0.09 \text{ nM})$ is approximately 20-fold higher than the
348	hydroxamate siderophore concentration (up to 0.02 nM (Mawji et al., 2008)). With
349	manganese(III) more abundant than iron(III), it will compete with iron(III) even if it has a lower
350	affinity.
351	4.3 Manganese at mid-depth

352 In surface waters, inhibition of MnO_x formation and the near-complete removal of MnO_x occurs

because of photochemical inhibition and reduction (Sunda et al., 1983; Sunda and Huntsman,

1994, 1988). Therefore, the initial formation of Mn(III)-L and MnO_x below the euphotic zone

requires the oxidation of manganese(II). The mid-depth MnO_x layer (Station B, 448 m) and the

356 nepheloid layer, with high manganese(II) and MnO_x, indicate insufficient ligands were present to

357 prevent the oxidative pathway from completing to MnO_x . The similarity in manganese speciation

358 relationships (high manganese(II) and MnO_x and low Mn(III)-L) to those of the benthic

359 nepheloid layer in the St. Lawrence Estuary (Oldham et al., 2017b) support the observations of 360 Morton et al. (2019) and Bishop and Fleisher (1987) that our dMn_T and MnO_x are transported 361 laterally from sedimentary sources on the shelf and slope. Either, MnO_x is directly sourced from 362 the sediment or, through biotic (Emerson et al., 1982; Tebo, 1991; Tebo et al., 2004) and abiotic 363 processes, is formed in situ during lateral transport either producing or accreting on small (1-4 364 μm) neutrally buoyant particles (Bishop and Fleisher, 1987; Lam et al., 2012; Sundby et al., 365 1981). A diffuse MnO_x layer increases the availability for particle water interactions and 366 consequently, an increase in reaction rates per volume (Rutgers van der Loeff and Boudreau, 367 1997). If formed *in situ*, the MnO_x can sequester organic carbon (Estes et al., 2017; Johnson et 368 al., 2015) and trace nutrients (phosphorus and iron; Murray, 1975) from their surrounding water.

369 The oxidizing capacity of manganese species derives from the number of electrons each 370 accepts and their redox potential, which are determined by the relative strength of the Mn(III)-L 371 complexes in the soluble phase or the crystallinity, sorbed materials and nature of the solid 372 manganese(III,IV) species. Weak Mn(III)-L complexes are likely redox reactive and the ligand 373 relatively bioavailable (Beyer Jr. and Fridovich, 1989; Jones et al., 2019a; Klewicki and Morgan, 374 1998; Sunda and Kieber, 1994). If the ligands are organic acids, the manganese(III) can reduce 375 the carboxyl motifs to carbon dioxide (Klewicki and Morgan, 1999, 1998). The presence of 376 Mn(III)-L_{DFOB} increases the oxidizing capability of the soluble phase (Sun et al., 2015; Tian et 377 al., 2019), which has a longer residence time relative to the particulate phase. Manganese oxide 378 particles may also have a relatively long residence time as the rate they sink (~ 0.76 m d^{-1}) is low 379 relative to Stokes Law (Glockzin et al., 2014). Glockzin et al. (2014) attribute the slow MnO_x 380 sinking rate to the entrapment of MnO_x within an organic matrix, which suggests a bacterial 381 formation of MnO_x based on laboratory studies (Toner et al., 2005). Nevertheless, sedimentary

382 sourced particles may also play a role in extending the residence time and influencing lateral 383 transport of MnO_x . The MnO_x particles could be sourced directly from surficial (oxidized) 384 sediments or the benthic boundary layer and advected laterally, or they could be formed in situ 385 during transport of other particles. For example, small $(1-4 \,\mu\text{m})$ pyrite crystals are relatively 386 neutrally buoyant and undergo orders of magnitude greater lateral transport (100s km) than 387 vertical (10s m) transport (Lam et al., 2012). Over hundreds of kilometers of lateral transport in 388 ~ 100 d, up to 100% of 1 µm pyrite and 35% of 4 µm pyrite will oxidize (Lam et al., 2012). The 389 oxidation of continental margin sourced pyrite during lateral transport results in a diffuse high 390 concentration of small neutrally buoyant iron oxyhydroxide particles that provide a large surface, 391 which may act as a catalyst for MnO_x formation.

392 A prominent zone of oxidized manganese species at depth included 2–3 nM MnO_x at 393 Station B (448 m; Fig. 3) and a broad Mn(III)-L_{DFOB} maximum [0.31 nM at 402 m, Station A 394 (Fig. 2); 0.6 nM at 371 and 448 m, Station B (Fig. 3)]. Though the oxidized manganese layer was 395 within the same range as the OMZ, the OMZ in this region contains sufficient oxygen such that 396 alternate respiratory electron acceptors such as MnO_x are not likely to be used. At both stations, 397 elevated MnO_x was at the base of, or below, the Mn(III)-L_{DFOB} layer, and this location highlights 398 the current paradigm in manganese biogeochemistry. Either, following the oxidation of Mn(III)-399 L_{DFOB} , the MnO_x settled through the water column, or during MnO_x lateral transport, which has a low (< 1 m d⁻¹) vertical component (Glockzin et al., 2014; Lam et al., 2012), the Mn(III)-L_{DFOB} 400 401 layer formed due to the MnO_x reacting with sinking organic material. Diffuse reactive oxidized 402 manganese layers are highly efficient in capturing and breaking down organic carbon (Rutgers 403 van der Loeff and Boudreau, 1997) with similar processes that occur at the sediment water 404 interface (Hedges and Keil, 1995; Madison et al., 2013).

405 4.4 The nepheloid layer

406	The nepheloid layer at depth at Station B is an example of a significant continental slope
407	input into the water column. The nepheloid layer(s) occurs as waters flush through the
408	Wilmington and Baltimore submarine canyons (Canals et al., 2006; Puig et al., 2013).
409	GEOTRACES observed Nepheloid layers containing > 15 nM MnO ₂ at Stations USGT11-04, -
410	06, -08, and -10 during their winter 2011 cruise (Fig. 1 and Lam et al., 2015); the nepheloid layer
411	at Station USGT11-10 was 1100 m thick. At the shelf-slope, nepheloid layer(s) would likely
412	combine high concentrations of manganese(II) from the oxygen-deficient interstitial pore waters
413	and high concentrations of MnO_x from the sub-oxic interface. A manganese speciation profile
414	similar to the bottom waters of Station B occurs in the benthic nepheloid layer of the outer St.
415	Lawrence Estuary (Jones et al., 2019a; Oldham et al., 2017b). In contrast to our observations, the
416	particulate manganese nepheloid layers observed in the GEOTRACES program (Lam et al.,
417	2015) did not contain an enrichment of dMn_T (Wu et al., 2014). The difference in manganese
418	fractions suggests removal of dMn _T since nepheloid layer formation.
419	4.5 Relevance of manganese(III)
420	Manganese(III) occurs in two pools of manganese, the oxidized and the dissolved pools.
421	The oxidized pool includes manganese species known for their oxidizing capacity (oxiMn; Figs. 4
422	& 5). It is inclusive of both soluble and particulate phases, $Mn(III)-L_{DFOB}$ and MnO_x (oxiMn =
423	$Mn(III)-L_{DFOB} + MnO_x$, respectively. The soluble manganese pool contains species capable of
424	being oxidized, $dMn_T (dMn_T = manganese(II) + Mn(III)-L_{DFOB}$; Figs. 4 & 5). The dMn_T pool
425	may contain other soluble oxidized species of manganese at low concentrations (< 0.3 nM;
426	(Thibault de Chanvalon and Luther, 2019)), which may not react with DFOB under the

427	conditions used. Below the euphotic zone and between years, there is a difference in the relative
428	concentrations of manganese species. In 2013, oxiMn was equivalent to 25% of the total
429	manganese (Mn_T), whereas, in 2014, it was closer to 45% (Table 2 and Figs. 4 & 5). The
430	difference in the contribution indicates that significant changes can pervade the underlying redox
431	behavior of an oceanic water column (Figs. 4 & 5). One contributing factor may be the seasonal
432	phytoplankton bloom, which was greater at Station A than Station B (Fig. 6), and following its
433	collapse, the available organic carbon provided a mechanism to induce greater manganese
434	cycling resulting in different concentrations of Mn(III)-L _{DFOB} .
435	Though the concentration of Mn(III)-L _{DFOB} is spatially variable, there are three
436	underlying trends. First, Mn(III)-L _{DFOB} increases within the _{oxi} Mn pool with depth (Figs. 4 & 5),
437	from < 10% at the surface to up to 60% by 2000 m. Increasing $Mn(III)$ -L _{DFOB} suggests that, even
438	with the aging of the mineral lattice (Eitel et al., 2018) during MnO_x horizontal and vertical
439	transport, MnO_x retain some capacity to oxidize available organic material. The second and third
440	trends are, $Mn(III)$ -L _{DFOB} increasing in concentration with depth (Table 1, Figs. 2 & 3) and
441	increasing proportionally within dMn_T with depth, from 1 to 23% (Table 2, Figs. 4 & 5). These
442	trends may help explain why dMn_T concentrations in intermediate and deep oceanic waters are
443	higher than predicted from the modeling of an ion removed through scavenging onto suspended
444	particulate material (Martin and Knauer, 1984; Statham et al., 1998; Sunda and Huntsman,
445	1988). To account for the higher than expected residence time and concentration of dMn _T , redox
446	cycling of manganese in marine systems (Sunda and Huntsman, 1988) must replenish the dMn_T
447	from MnO_x . Therefore, MnO_x particles play an essential role in elemental cycles in the ocean.
448	This cycling supports the theory that deep oceanic water dMn _T contains significant quantities of
449	Mn(III)-L (Johnson, 2006) within the global ocean's uniform dissolved manganese concentration

450 of 0.15 nM (Statham et al., 1998).

451 **5.0** Conclusion

452 Through direct quantification of 1) reactive MnO_x (Jones et al., 2019a), as opposed to 453 estimating MnO₂ from sequential leaching of particulate manganese, and 2) measuring reactive 454 Mn(III)-L (Jones et al., 2019a, 2019b), we have quantified the oxidized intermediate- and end-455 member in the manganese cycle. MnO_x and Mn(III)-L are redox reactive, participating in 456 electron transfer and hydrogen atom transfer reactions (Jones et al., 2019a; Luther et al., 2018), 457 and are intrinsically linked to organic carbon. In oxygenated systems, these oxidized species 458 dominate manganese cycling. Mn(III)-L is pervasive in marine systems, and this characteristic 459 means it is a significant component of the deep water-soluble manganese. Mn(III)-L will also 460 play a role as a reductant or oxidant in this system. In the oceanic water column, the dynamic 461 nature of MnO_x and likely Mn(III)-L suggest that the cycling of these species will significantly 462 affect marine biogeochemistry and especially that of organic carbon.

463 Acknowledgments

- 464 This work was supported primarily by research grants from the Chemical Oceanography
- 465 Program of the National Science Foundation (OCE-1558692 and OCE-1154357 to BMT and
- 466 OCE-1558738 and OCE-1155385 to GWL) with partial support from the U.S. National Oceanic
- 467 and Atmospheric Administration Sea Grant program (NA14OAR4170087 to GWL). We are also
- 468 grateful to the captains and crew of the R/V Hugh R Sharp who made the sampling for this
- 469 research possible and highly hospitable. In addition, we thank the reviewers for their excellent
- 470 comments and suggestions that helped with improving this paper.

471

472 **Bibliography**

- Adams, A.M., Prospero, J.M., Zhang, C., 2012. CALIPSO-derived three-dimensional structure
 of aerosol over the Atlantic basin and adjacent continents. J. Clim. 25, 6862–6879.
 https://doi.org/10.1175/JCLI-D-11-00672.1
- 476 Aguilar-Islas, A.M., Resing, J.A., Bruland, K.W., 2006. Catalytically enhanced
 477 spectrophotometric determination of manganese in seawater by flow-injection analysis
 478 with a commercially available resin for on-line preconcentration. Limnol. Oceanogr.
 479 Methods 4, 105–113. https://doi.org/10.4319/lom.2006.4.105
- Altmann, H.J., 1972. Bestimmung von in wasser gelostem sauerstoff mit Leukoberbelinblau I.
 Eine schnelle Winkler-Methode. Z Anal Chem 262, 97–99.
 http://aquaticcommons.org/4843/1/68_1972_altm_dete.pdf
- Baker, A.R., Jickells, T.D., Witt, M., Linge, K.L., 2006. Trends in the solubility of iron,
 aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean.
 Mar. Chem. 98, 43–58.
- Baker, A.R., Landing, W.M., Bucciarelli, E., Cheize, M., Fietz, S., Hayes, C.T., Kadko, D.,
 Morton, P.L., Rogan, N., Sarthou, G., Shelley, R.U., Shi, Z., Shiller, A., van Hulten,
 M.M.P., 2016. Trace element and isotope deposition across the air–sea interface: progress
 and research needs. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 374, 20160190.
 https://doi.org/10.1098/rsta.2016.0190
- 491 Beyer Jr., W.F., Fridovich, I., 1989. Characterization of a superoxide dismutase mimic prepared
 492 from desferrioxamine and MnO₂. Arch. Biochem. Biophys. 271, 149–156.
 493 https://doi.org/10.1016/0003-9861(89)90265-8
- Bishop, J.K.B., Fleisher, M.Q., 1987. Particulate manganese dynamics in Gulf Stream warmcore rings and surrounding waters of the N.W. Atlantic. Geochim. Cosmochim. Acta 51,
 2807–2825. https://doi.org/10.1016/0016-7037(87)90160-8
- Boyd, P.W., Claustre, H., Levy, M., Siegel, D.A., Weber, T., 2019. Multi-faceted particle pumps
 drive carbon sequestration in the ocean. Nature 568, 327. https://doi.org/10.1038/s41586019-1098-2
- Burdige, D.J., Komada, T., 2020. Iron redox cycling, sediment resuspension and the role of
 sediments in low oxygen environments as sources of iron to the water column. Mar.
 Chem. 223, 103793. https://doi.org/10.1016/j.marchem.2020.103793
- Butterfield, C.N., Soldatova, A.V., Lee, S.-W., Spiro, T.G., Tebo, B.M., 2013. Mn(II,III)
 oxidation and MnO₂ mineralization by an expressed bacterial multicopper oxidase. Proc.
 Natl. Acad. Sci. 110, 11731–11735. https://doi.org/10.1073/pnas.1303677110
- Canals, M., Puig, P., Madron, X.D. de, Heussner, S., Palanques, A., Fabres, J., 2006. Flushing
 submarine canyons. Nature 444, 354–357. https://doi.org/10.1038/nature05271
- Chang Chien, S.W., Chen, H.L., Wang, M.C., Seshaiah, K., 2009. Oxidative degradation and
 associated mineralization of catechol, hydroquinone and resorcinol catalyzed by
 birnessite. Chemosphere 74, 1125–1133.
- 511 https://doi.org/10.1016/j.chemosphere.2008.10.007
- 512 Charette, M.A., Lam, P.J., Lohan, M.C., Kwon, E.Y., Hatje, V., Jeandel, C., Shiller, A.M.,
 513 Cutter, G.A., Thomas, A., Boyd, P.W., Homoky, W.B., Milne, A., Thomas, H.,
- 514 Andersson, P.S., Porcelli, D., Tanaka, T., Geibert, W., Dehairs, F., Garcia-Orellana, J.,
- 515 2016. Coastal ocean and shelf-sea biogeochemical cycling of trace elements and isotopes:
- 516 lessons learned from GEOTRACES. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 374, 20160076, https://doi.org/10.1008/mto.2016.0076
- 517 20160076. https://doi.org/10.1098/rsta.2016.0076

- 518 Chorover, J., Amistadi, M.K., 2001. Reaction of forest floor organic matter at goethite, birnessite
 519 and smectite surfaces. Geochim. Cosmochim. Acta 65, 95–109.
 520 https://doi.org/10.1016/S0016-7037(00)00511-1
- 521 Clement, B.G., Luther, G.W., Tebo, B.M., 2009. Rapid, oxygen-dependent microbial Mn(II)
 522 oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic
 523 zone. Geochim. Cosmochim. Acta 73, 1878–1889.
- 524 https://doi.org/10.1016/j.gca.2008.12.023
- 525 Cox, J.L., Wiebe, P.H., Ortner, P., Boyd, S., 1982. Seasonal development of subsurface
 526 chlorophyll maxima in slope water and northern Sargasso Sea of the Northwestern
 527 Atlantic Ocean. Biol. Oceanogr. 1, 271–285.
- 528 https://doi.org/10.1080/01965581.1982.10749444
- Cullen, J.J., 1982. The deep chlorophyll maximum: Comparing vertical profiles of chlorophyll a.
 Can. J. Fish. Aquat. Sci. 39, 791–803. https://doi.org/10.1139/f82-108
- Davies, G., 1969. Some aspects of the chemistry of manganese(III) in aqueous solution. Coord.
 Chem. Rev. 4, 199–224. https://doi.org/10.1016/S0010-8545(00)80086-7
- 533 Dellwig, O., Schnetger, B., Brumsack, H.-J., Grossart, H.-P., Umlauf, L., 2012. Dissolved
 534 reactive manganese at pelagic redoxclines (part II): Hydrodynamic conditions for
 535 accumulation. J. Mar. Syst. 90, 31–41. https://doi.org/10.1016/j.jmarsys.2011.08.007
- 536 Duckworth, O.W., Sposito, G., 2007. Siderophore-promoted dissolution of synthetic and
 537 biogenic layer-type Mn oxides. Chem. Geol. 242, 497–508.
 538 https://doi.org/10.1016/j.chemgeo.2007.05.007
- 539 Duckworth, O.W., Sposito, G., 2005a. Siderophore-manganese(III) interactions. I. Air-oxidation
 540 of manganese(II) promoted by desferrioxamine B. Environ. Sci. Technol. 39, 6037–6044.
 541 https://doi.org/10.1021/es050275k
- 542 Duckworth, O.W., Sposito, G., 2005b. Siderophore-manganese(III) interactions II. Manganite
 543 dissolution promoted by desferrioxamine B. Environ. Sci. Technol. 39, 6045–6051.
 544 https://doi.org/10.1021/es050276c
- 545 Eitel, E.M., Zhao, S., Tang, Y., Taillefert, M., 2018. Effect of manganese oxide aging and
 546 structure transformation on the kinetics of thiol oxidation. Environ. Sci. Technol. 52,
 547 13202–13211. https://doi.org/10.1021/acs.est.8b03993
- 548 Emerson, S., Kalhorn, S., Jacobs, L., Tebo, B.M., Nealson, K.H., Rosson, R.A., 1982.
 549 Environmental oxidation rate of manganese(II) bacterial catalysis. Geochim.
 550 Cosmochim. Acta 46, 1073–1079.
- 551 Estes, E.R., Andeer, P.F., Nordlund, D., Wankel, S.D., Hansel, C.M., 2017. Biogenic manganese
 552 oxides as reservoirs of organic carbon and proteins in terrestrial and marine
 553 environments. Geobiology 15, 158–172. https://doi.org/10.1111/gbi.12195
- Evans, R.H., Baker, K.S., Brown, O.B., Smith, R.C., 1985. Chronology of warm-core ring 82B.
 J. Geophys. Res. Oceans 90, 8803–8811. https://doi.org/10.1029/JC090iC05p08803
- Glockzin, M., Pollehne, F., Dellwig, O., 2014. Stationary sinking velocity of authigenic
 manganese oxides at pelagic redoxclines. Mar. Chem. 160, 67–74.
 https://doi.org/10.1016/j.marchem.2014.01.008
- Hansard, S.P., Easter, H.D., Voelker, B.M., 2011. Rapid reaction of nanomolar Mn(II) with
 superoxide radical in seawater and simulated freshwater. Environ. Sci. Technol. 45,
 2811–2817.

- Hedges, J.I., Keil, R.G., 1995. Sedimentary organic matter preservation: An assessment and
 speculative synthesis. Mar. Chem. 49, 81–115. https://doi.org/10.1016/03044203(95)00008-F
- Hogle, S.L., Dupont, C.L., Hopkinson, B.M., King, A.L., Buck, K.N., Roe, K.L., Stuart, R.K.,
 Allen, A.E., Mann, E.L., Johnson, Z.I., Barbeau, K.A., 2018. Pervasive iron limitation at
 subsurface chlorophyll maxima of the California Current. Proc. Natl. Acad. Sci. 115,
 13300–13305. https://doi.org/10.1073/pnas.1813192115
- Huisman, J., Pham Thi, N.N., Karl, D.M., Sommeijer, B., 2006. Reduced mixing generates
 oscillations and chaos in the oceanic deep chlorophyll maximum. Nature 439, 322–325.
 https://doi.org/10.1038/nature04245
- Jensen, L.T., Wyatt, N.J., Landing, W.M., Fitzsimmons, J.N., 2020. Assessment of the stability,
 sorption, and exchangeability of marine dissolved and colloidal metals. Mar. Chem. 220,
 103754. https://doi.org/10.1016/j.marchem.2020.103754
- Jickells, T.D., Baker, A.R., Chance, R., 2016. Atmospheric transport of trace elements and
 nutrients to the oceans. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 374, 20150286.
 https://doi.org/10.1098/rsta.2015.0286
- Johnson, K., Purvis, G., Lopez-Capel, E., Peacock, C., Gray, N., Wagner, T., März, C., Bowen,
 L., Ojeda, J., Finlay, N., Robertson, S., Worrall, F., Greenwell, C., 2015. Towards a
 mechanistic understanding of carbon stabilization in manganese oxides. Nat. Commun. 6,
 7628. https://doi.org/10.1038/ncomms8628
- Johnson, K.S., 2006. Manganese redox chemistry revisited. Science 313, 1896–1897.
 https://doi.org/10.1126/science.1133496
- Jones, M.R., Luther, G.W., Mucci, A., Tebo, B.M., 2019a. Concentrations of reactive Mn(III)-L
 and MnO₂ in estuarine and marine waters determined using spectrophotometry and the
 leuco base, leucoberbelin blue. Talanta 200, 91–99.
 https://doi.org/10.1016/i.talanta.2010.03.026
- 587 https://doi.org/10.1016/j.talanta.2019.03.026
- Jones, M.R., Oldham, V.E., Luther, G.W., Mucci, A., Tebo, B.M., 2019b. Distribution of
 desferrioxamine-B-extractable soluble manganese(III) and particulate MnO₂ in the St.
 Lawrence Estuary, Canada. Mar. Chem. 208, 70–82.
 https://doi.org/10.1016/j.marchem.2018.11.005
- Joyce, T.M., Schmitt, R.W., Stalcup, M.C., 1983. Influence of the Gulf Stream upon the shortterm evolution of a warm-core ring. Mar. Freshw. Res. 34, 515–524.
 https://doi.org/10.1071/mf9830515
- Klewicki, J.K., Morgan, J.J., 1999. Dissolution of β-MnOOH particles by ligands:
 pyrophosphate, ethylenediaminetetraacetate, and citrate. Geochim. Cosmochim. Acta 63,
 3017–3024. https://doi.org/10.1016/S0016-7037(99)00229-X
- Klewicki, J.K., Morgan, J.J., 1998. Kinetic behavior of Mn(III) complexes of pyrophosphate,
 EDTA, and citrate. Environ. Sci. Technol. 32, 2916–2922.
 https://doi.org/10.1021/es980308e
- Kostka, J.E., Luther, G.W., Nealson, K.H., 1995. Chemical and biological reduction of Mn(III) pyrophosphate complexes: Potential importance of dissolved Mn(III) as an environmental
 oxidant. Geochim. Cosmochim. Acta 59, 885–894.
- Lam, P.J., Ohnemus, D.C., Auro, M.E., 2015. Size-fractionated major particle composition and
 concentrations from the US GEOTRACES North Atlantic Zonal Transect. Deep Sea Res.
 Part II Top. Stud. Oceanogr., GEOTRACES GA-03 The U.S. GEOTRACES North
 Atlantic Transect 116, 303–320. https://doi.org/10.1016/j.dsr2.2014.11.020

- Lam, P.J., Ohnemus, D.C., Marcus, M.A., 2012. The speciation of marine particulate iron
 adjacent to active and passive continental margins. Geochim. Cosmochim. Acta 80, 108–
 124. https://doi.org/10.1016/j.gca.2011.11.044
- Launer, H.F., Yost, D.M., 1934. The kinetics of the reaction between potassium permanganate
 and oxalic acid. II. J. Am. Chem. Soc. 56, 2571–2577.
 https://doi.org/10.1021/ja01327a013
- Liu, D., Wang, Z., Liu, Z., Winker, D., Trepte, C., 2008. A height resolved global view of dust
 aerosols from the first year CALIPSO lidar measurements. J. Geophys. Res. Atmospheres
 113. https://doi.org/10.1029/2007JD009776
- Luther, G.W., 2010. The role of one- and two-electron transfer reactions in forming
 thermodynamically unstable intermediates as barriers in multi-electron redox reactions.
 Aquat. Geochem. 16, 395–420. https://doi.org/10.1007/s10498-009-9082-3
- Luther, G.W., 1990. The frontier-molecular-orbital theory approach in geochemical processes,
 in: Stumm, W. (Ed.), Aquatic Chemical Kinetics. John Wiley & Sons Ltd, New York, pp.
 173–198.
- Luther, G.W., Chanvalon, A.T. de, Oldham, V.E., Estes, E.R., Tebo, B.M., Madison, A.S., 2018.
 Reduction of manganese oxides: Thermodynamic, kinetic and mechanistic considerations
 for one- versus two-electron transfer steps. Aquat. Geochem. 257–277.
 https://doi.org/10.1007/s10498-018-9342-1
- Luther, G.W., Madison, A.S., Mucci, A., Sundby, B., Oldham, V.E., 2015. A kinetic approach to
 assess the strengths of ligands bound to soluble Mn(III). Mar. Chem., SCOR WG 139:
 Organic Ligands A Key Control on Trace Metal Biogeochemistry in the Ocean 173,
 93–99. https://doi.org/10.1016/j.marchem.2014.09.006
- Madison, A.S., Tebo, B.M., Mucci, A., Sundby, B., Luther, G.W., 2013. Abundant porewater
 Mn(III) is a major component of the sedimentary redox system. Science 341, 875–878.
 https://doi.org/10.1126/science.1241396
- Magliozzo, R.S., Marcinkeviciene, J.A., 1997. The role of Mn(II)-peroxidase activity of
 mycobacterial catalase-peroxidase in activation of the antibiotic isoniazid. J. Biol. Chem.
 272, 8867–8870. https://doi.org/10.1074/jbc.272.14.8867
- Martin, J.H., Knauer, G.A., 1984. VERTEX: manganese transport through oxygen minima. Earth
 Planet. Sci. Lett. 67, 35–47. https://doi.org/10.1016/0012-821X(84)90036-0
- Martin, J.H., Knauer, G.A., Broenkow, W.W., 1985. VERTEX: the lateral transport of
 manganese in the northeast Pacific. Deep Sea Res. Part Oceanogr. Res. Pap. 32, 1405–
 1427. https://doi.org/10.1016/0198-0149(85)90056-1
- Mawji, E., Gledhill, M., Milton, J.A., Tarran, G.A., Ussher, S., Thompson, A., Wolff, G.A.,
 Worsfold, P.J., Achterberg, E.P., 2008. Hydroxamate siderophores: Occurrence and
 importance in the Atlantic Ocean. Environ. Sci. Technol. 42, 8675–8680.
 https://doi.org/10.1021/es801884r
- Mayer, J.M., 2011. Understanding hydrogen atom transfer: From bond strengths to Marcus
 Theory. Acc. Chem. Res. 44, 36–46. https://doi.org/10.1021/ar100093z
- Middag, R., de Baar, H.J.W., Laan, P., Klunder, M.B., 2011. Fluvial and hydrothermal input of
 manganese into the Arctic Ocean. Geochim. Cosmochim. Acta 75, 2393–2408.
 https://doi.org/10.1016/j.gca.2011.02.011
- Milne, A., Landing, W., Bizimis, M., Morton, P., 2010. Determination of Mn, Fe, Co, Ni, Cu,
 Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled

653	mass spectrometry (HR-ICP-MS). Anal. Chim. Acta 665, 200-207.
654	https://doi.org/10.1016/j.aca.2010.03.027
655	Morgan, J.J., 2005. Kinetics of reaction between O ₂ and Mn(II) species in aqueous solutions.
656	Geochim. Cosmochim. Acta 69, 35–48. https://doi.org/10.1016/j.gca.2004.06.013
657	Morton, P.L., Landing, W.M., Shiller, A.M., Moody, A., Kelly, T.D., Bizimis, M., Donat, J.R.,
658	De Carlo, E.H., Shacat, J., 2019. Shelf Inputs and Lateral Transport of Mn, Co, and Ce in
659	the Western North Pacific Ocean. Front. Mar. Sci. 6.
660	https://doi.org/10.3389/fmars.2019.00591
661	Murray, J.W., 1975. The interaction of metal ions at the manganese dioxide-solution interface.
662	Geochim. Cosmochim. Acta 39, 505–519. https://doi.org/10.1016/0016-7037(75)90103-9
663	Noble, A.E., Lamborg, C.H., Ohnemus, D.C., Lam, P.J., Goepfert, T.J., Measures, C.I., Frame,
664	C.H., Casciotti, K.L., DiTullio, G.R., Jennings, J., Saito, M.A., 2012. Basin-scale inputs
665	of cobalt, iron, and manganese from the Benguela-Angola front to the South Atlantic
666	Ocean. Limnol. Oceanogr. 57, 989–1010. https://doi.org/10.4319/lo.2012.57.4.0989
667	Oldham, V.E., Jones, M.R., Tebo, B.M., Luther, G.W., 2017a. Oxidative and reductive processes
668	contributing to manganese cycling at oxic-anoxic interfaces. Mar. Chem., SI: Honoring
669	Frank Millero 195, 122–128. https://doi.org/10.1016/j.marchem.2017.06.002
670	Oldham, V.E., Lamborg, C.H., Hansel, C.M., 2020. The spatial and temporal variability of Mn
671	speciation in the coastal Northwest Atlantic Ocean. J. Geophys. Res. Oceans 125,
672	e2019JC015167. https://doi.org/10.1029/2019JC015167
673	Oldham, V.E., Mucci, A., Tebo, B.M., Luther, G.W., 2017b. Soluble Mn(III)-L complexes are
674	abundant in oxygenated waters and stabilized by humic ligands. Geochim. Cosmochim.
675	Acta 199, 238–246. https://doi.org/10.1016/j.gca.2016.11.043
676	Oldham, V.E., Owings, S.M., Jones, M.R., Tebo, B.M., Luther, G.W., 2015. Evidence for the
677	presence of strong Mn(III)-binding ligands in the water column of the Chesapeake Bay.
678	Mar. Chem. 171, 58–66. https://doi.org/10.1016/j.marchem.2015.02.008
679	Oldham, V.E., Siebecker, M.G., Jones, M.R., Mucci, A., Tebo, B.M., Luther, G.W., 2019. The
680	speciation and mobility of Mn and Fe in estuarine sediments. Aquat. Geochem.
681	https://doi.org/10.1007/s10498-019-09351-0
682	Pakhomova, S.V., Rozanov, A.G., Yakushev, E.V., 2009. Dissolved and particulate forms of
683	iron and manganese in the redox zone of the Black Sea. Oceanology 49, 773–787.
684	https://doi.org/10.1134/S0001437009060046
685	Parker, D.L., Sposito, G., Tebo, B.M., 2004. Manganese(III) binding to a pyoverdine siderophore
686	produced by a manganese(II)-oxidizing bacterium. Geochim. Cosmochim. Acta 68,
687	4809–4820. https://doi.org/10.1016/j.gca.2004.05.038
688	Puig, P., Madron, X.D. de, Salat, J., Schroeder, K., Martín, J., Karageorgis, A.P., Palanques, A.,
689	Roullier, F., Lopez-Jurado, J.L., Emelianov, M., Moutin, T., Houpert, L., 2013. Thick
690	bottom nepheloid layers in the western Mediterranean generated by deep dense shelf
691	water cascading. Prog. Oceanogr. 111, 1–23.
692	https://doi.org/10.1016/j.pocean.2012.10.003
693	Rutgers van der Loeff, M.M., Boudreau, B.P., 1997. The effect of resuspension on chemical
694	exchanges at the sediment-water interface in the deep sea — A modelling and natural
695	radiotracer approach. J. Mar. Syst. 11, 305–342. https://doi.org/10.1016/S0924-
696	7963(96)00128-5

- 697 Scharff, J.P., Genin, R., 1975. Chélates du manganese(II) avec des coordinats phénoliques: Partie
 698 I. Complexes simples binaires. Anal. Chim. Acta 78, 201–209.
 699 https://doi.org/10.1016/S0003-2670(01)84766-8
- Schnetger, B., Dellwig, O., 2012. Dissolved reactive manganese at pelagic redoxclines (part I): A
 method for determination based on field experiments. J. Mar. Syst. 90, 23–30.
 https://doi.org/10.1016/j.jmarsys.2011.08.006
- Shiller, A.M., 1997. Manganese in surface waters of the Atlantic Ocean. Geophys. Res. Lett. 24,
 1495–1498. https://doi.org/10.1029/97GL01456
- Soldatova, A.V., Romano, C.A., Tao, L., Stich, T.A., Casey, W.H., Britt, R.D., Tebo, B.M.,
 Spiro, T.G., 2017a. Mn(II) oxidation by the multicopper oxidase complex Mnx: A
 coordinated two-stage Mn(II)/(III) and Mn(III)/(IV) mechanism. J. Am. Chem. Soc. 139,
 11381–11391. https://doi.org/10.1021/jacs.7b02772
- Soldatova, A.V., Tao, L., Romano, C.A., Stich, T.A., Casey, W.H., Britt, R.D., Tebo, B.M.,
 Spiro, T.G., 2017b. Mn(II) oxidation by the multicopper oxidase complex Mnx: A
 binuclear activation mechanism. J. Am. Chem. Soc. 139, 11369–11380.
 https://doi.org/10.1021/jacs.7b02771
- Søndergaard, M., Middelboe, M., 1995. A cross-system analysis of labile dissolved organic
 carbon. Mar. Ecol. Prog. Ser. 118, 283–294.
- Statham, P.J., Yeats, P.A., Landing, W.M., 1998. Manganese in the eastern Atlantic Ocean:
 processes influencing deep and surface water distributions. Mar. Chem. 61, 55–68.
 https://doi.org/10.1016/S0304-4203(98)00007-3
- Stumm, W., Morgan, J.J., 1996. Aquatic Chemistry Chemical Equilibria and Rates in Natural
 Waters. John Wiley and Son, New York.
- Sun, B., Guan, X., Fang, J., Tratnyek, P.G., 2015. Activation of manganese oxidants with
 bisulfite for enhanced oxidation of organic contaminants: The involvement of Mn(III).
 Environ. Sci. Technol. 49, 12414–12421. https://doi.org/10.1021/acs.est.5b03111
- Sunda, W.G., Huntsman, S.A., 1997. Interrelated influence of iron, light and cell size on marine
 phytoplankton growth. Nature 390, 389–392. https://doi.org/10.1038/37093
- Sunda, W.G., Huntsman, S.A., 1994. Photoreduction of manganese oxides in seawater. Mar.
 Chem. 46, 133–152.
- Sunda, W.G., Huntsman, S.A., 1988. Effect of sunlight on redox cycles of manganese in the
 southwestern Sargasso Sea. Deep-Sea Res. Part -Oceanogr. Res. Pap. 35, 1297–1317.
- Sunda, W.G., Huntsman, S.A., Harvey, G.R., 1983. Photo-reduction of manganese oxides in
 seawater and its geochemical and biological implications. Nature 301, 234–236.
- Sunda, W.G., Kieber, D.J., 1994. Oxidation of humic substances by manganese oxides yields
 low-molecular-weight organic substrates. Nature 367, 62–64.
 https://doi.org/10.1038/367062a0
- Sundby, B., Silverberg, N., Chesselet, R., 1981. Pathways of manganese in an open estuarine
 system. Geochim. Cosmochim. Acta 45, 293–307. https://doi.org/10.1016/00167037(81)90240-4
- Sutherland, K.M., Wankel, S.D., Hansel, C.M., 2020. Dark biological superoxide production as a
 significant flux and sink of marine dissolved oxygen. Proc. Natl. Acad. Sci.
 https://doi.org/10.1073/pnas.1912313117
- Tebo, B.M., 1991. Manganese(II) oxidation in the suboxic zone of the Black Sea. Deep Sea Res.
 Part Oceanogr. Res. Pap., Black Sea Oceanography: Results from the 1988 Black Sea
 Expedition 38, S883–S905. https://doi.org/10.1016/S0198-0149(10)80015-9

- Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J., Parker, D., Verity, R., Webb,
 S.M., 2004. Biogenic manganese oxides: Properties and mechanisms of formation. Annu.
 Rev. Earth Planet. Sci. 32, 287–328.
- 746 https://doi.org/10.1146/annurev.earth.32.101802.120213
- Thibault de Chanvalon, A., Luther, G.W., 2019. Mn speciation at nanomolar concentrations with
 a porphyrin competitive ligand and UV–vis measurements. Talanta 200, 15–21.
 https://doi.org/10.1016/j.talanta.2019.02.069
- Tian, S.-Q., Wang, L., Liu, Y.-L., Yang, T., Huang, Z.-S., Wang, X.-S., He, H.-Y., Jiang, J., Ma,
 J., 2019. Enhanced permanganate oxidation of sulfamethoxazole and removal of
 dissolved organics with biochar: Formation of highly oxidative manganese intermediate
 species and in situ activation of biochar. Environ. Sci. Technol.
 https://doi.org/10.1021/acs.est.9b00180
- Toner, B., Fakra, S., Villalobos, M., Warwick, T., Sposito, G., 2005. Spatially resolved
 characterization of biogenic manganese oxide production within a bacterial biofilm.
 Appl. Environ. Microbiol. 71, 1300–1310. https://doi.org/10.1128/AEM.71.3.13001310.2005
- Trouwborst, R.E., Clement, B.G., Tebo, B.M., Glazer, B.T., Luther, G.W., 2006. Soluble Mn(III)
 in suboxic zones. Science 313, 1955–1957.
- Twining, B.S., Rauschenberg, S., Morton, P.L., Ohnemus, D.C., Lam, P.J., 2015. Comparison of
 particulate trace element concentrations in the North Atlantic Ocean as determined with
 discrete bottle sampling and in situ pumping. Deep Sea Res. Part II Top. Stud. Oceanogr.,
 GEOTRACES GA-03 The U.S. GEOTRACES North Atlantic Transect 116, 273–282.
 https://doi.org/10.1016/j.dsr2.2014.11.005
- von Langen, P.J., Johnson, K.S., Coale, K.H., Elrod, V.A., 1997. Oxidation kinetics of
 manganese (II) in seawater at nanomolar concentrations. Geochim. Cosmochim. Acta 61,
 4945–4954. https://doi.org/10.1016/S0016-7037(97)00355-4
- Webb, S.M., Dick, G.J., Bargar, J.R., Tebo, B.M., 2005. Evidence for the presence of Mn(III)
 intermediates in the bacterial oxidation of Mn(II). Proc. Natl. Acad. Sci. U. S. A. 102,
 5558–5563. https://doi.org/10.1073/pnas.0409119102
- Wu, J., Luther, G.W., 1996. Spatial and temporal distribution of iron in the surface water of the
 northwestern Atlantic Ocean. Geochim. Cosmochim. Acta 60, 2729–2741.
 https://doi.org/10.1016/0016-7037(96)00135-4
- Wu, J., Luther, G.W., 1994. Size-fractionated iron concentrations in the water column of the
 western North Atlantic Ocean. Limnol. Oceanogr. 39, 1119–1129.
 https://doi.org/10.4319/lo.1994.39.5.1119
- Wu, J., Roshan, S., Chen, G., 2014. The distribution of dissolved manganese in the tropical–
 subtropical North Atlantic during US GEOTRACES 2010 and 2011 cruises. Mar. Chem.
 166, 9–24. https://doi.org/10.1016/j.marchem.2014.08.007
- Yao, W., Millero, F.J., 1996. Adsorption of phosphate on manganese dioxide in seawater.
 Environ. Sci. Technol. 30, 536–541. https://doi.org/10.1021/es950290x
- 783

784 Table 1. The physicochemical values, oxygen concentration and percentage saturation (O₂ sat.), and manganese species concentration

for A (2013) and B (2014) Stations. The manganese species are particulate manganese(III/IV) oxide (MnO_x), total dissolved

786 manganese (dMn_T), soluble Mn(III)-L_{DFOB}, and the estimated manganese(II) (dMn_T - Mn(III)-L_{DFOB}). MnO_x errors are the standard

deviation of repeat analyses plus the error due to the regression of the calibration curve; dMn_T and Mn(III)-L_{DFOB} errors are the

standard deviation of triplicate analyses. The manganese(II) error was calculated through error propagation.

Depth	Temperature	Salinity	O_2	O ₂ sat.	MnO _x	dMn _T	Mn(III)-L _{DFOB}	manganese(II)
m	°C	$S_{ m p}$	μM	%	nM	nM	nM	nM
Station	A1 (37 07.84 N	, 073 19.72	2 W; St. #	7)				
10	27.7	35.74	192	95	0.49 ± 0.02	12.34 ± 0.04	0.02 ± 0.01	12.32 ± 0.04
74	16.8	35.87	244	64	1.22 ± 0.04	4.31 ± 0.08	0.31 ± 0.01	4.00 ± 0.08
154	14.0	35.81	258	56	0.89 ± 0.03	7.95 ± 0.03	0.23 ± 0.01	7.72 ± 0.03
225	11.9	35.48	126	47	0.49 ± 0.01	1.48 ± 0.04	0.09 ± 0.00	1.39 ± 0.04
402	7.1	35.09	171	57	0.40 ± 0.01	2.69 ± 0.03	0.31 ± 0.01	2.39 ± 0.03
698	5.0	35.01	231	73	0.27 ± 0.01	1.95 ± 0.05	0.13 ± 0.01	1.82 ± 0.05
Station	A2 (37 18.45 N	, 073 23.79	9 W; St. #	12)				
5	27.6	35.73	191	95	0.81 ± 0.03	9.27 ± 0.05	0.07 ± 0.00	9.21 ± 0.05
152	13.5	35.73	212	81	1.30 ± 0.04	4.55 ± 0.02	0.21 ± 0.01	4.34 ± 0.02
256	12.6	35.63	177	67	0.92 ± 0.03	5.12 ± 0.12	0.00 ± 0.01	5.12 ± 0.12
325	10.2	35.29	130	46	0.29 ± 0.01	3.19 ± 0.19	0.02 ± 0.01	3.17 ± 0.19
525	6.2	35.05	194	63	0.26 ± 0.01	2.70 ± 0.19	0.13 ± 0.01	2.56 ± 0.19
825	4.7	34.99	240	75	0.34 ± 0.01	2.01 ± 0.00	0.10 ± 0.01	1.91 ± 0.01
Station	A2 deep water	(37 18.32 N	I, 073 24.	03 W; St. #	‡12A)			
2032	3.4	34.94	255	77	0.19 ± 0.01	1.38 ± 0.18	0.18 ± 0.01	1.20 ± 0.18
Station	B1 (38 17.40 N	, 072 43.70	W; St. #	9)				
11	24.2	35.23	205	96	0.88 ± 0.07	6.43 ± 0.32	0.19 ± 0.03	6.24 ± 0.32
44	18.7	35.35	233	99	0.79 ± 0.08	6.10 ± 0.49	0.35 ± 0.08	5.75 ± 0.50
63	16.2	35.57	191	77	0.70 ± 0.03	2.86 ± 0.20	0.39 ± 0.01	2.47 ± 0.20
98	14.5	35.71	168	66	0.73 ± 0.04	2.28 ± 0.13	0.46 ± 0.02	1.82 ± 0.14
194	12.3	35.55	150	56	0.70 ± 0.02	1.48 ± 0.12	0.19 ± 0.05	1.29 ± 0.13
282	9.9	35.26	131	47	0.52 ± 0.03	1.31 ± 0.11	0.17 ± 0.07	1.14 ± 0.13
371	8.2	35.13	151	51	0.35 ± 0.01	2.70 ± 0.13	0.57 ± 0.04	2.13 ± 0.13
448	6.8	35.08	180	59	2.21 ± 0.09	1.19 ± 0.16	0.63 ± 0.06	0.56 ± 0.17
599	5.5	35.04	215	69	0.57 ± 0.01	1.92 ± 0.01	0.31 ± 0.02	1.60 ± 0.02
1201	4.2	34.97	247	76	0.35 ± 0.01	1.24 ± 0.04	0.29 ± 0.01	0.96 ± 0.04

2004	3.4	34.94	252	76	0.50 ± 0.01	3.97 ± 0.18	0.76 ± 0.01	3.22 ± 0.18
2602	2.8	34.92	252	75	3.51 ± 0.30	26.02 ± 1.91	0.73 ± 0.02	25.28 ± 1.91
Station	B2 (38 14.96 N	N, 072 45.27	' W; St. #	10)				
5	24.3	35.25	204	96	2.15 ± 0.05	7.67 ± 0.26	0.47 ± 0.04	7.21 ± 0.26
34	22.8	35.79	238	108	0.30 ± 0.04	6.70 ± 0.15	0.83 ± 0.03	5.87 ± 0.15
95	14.1	35.65	171	67	1.45 ± 0.04	2.07 ± 0.06	0.46 ± 0.06	1.61 ± 0.09
196	12.1	35.52	151	56	0.75 ± 0.02	2.17 ± 0.04	0.50 ± 0.04	1.67 ± 0.05
274	10.0	35.27	130	46	0.42 ± 0.01	1.41 ± 0.09	0.52 ± 0.04	0.89 ± 0.10
449	6.8	35.08	180	59	3.03 ± 0.14	1.41 ± 0.04	0.52 ± 0.02	0.89 ± 0.04

790	Table 2. Columns 2 to 4, the percentage contribution of Mn(III)-L towards total dissolved manganese
791	$(dMn_T = manganese(II) + Mn(III) - L_{DEOR})$ and oxidized manganese (aviMn) which is composed of

/91	$(\text{divin}_{1} - \text{manganese}(\text{m}) + \text{win}(\text{m}) - \text{LDFOB})$ and $\text{Oxidized manganese}(\text{oxi})$, which is composed of
792	soluble Mn(III)-L _{DEOB} and particulate MnO _x and the ratio (expressed as a percentage) of α_{xi} Mn to dMn _T .

174	soluble min(iii) DDF0B and particulate mino _x and the ratio (expressed as a percentage) of _{0x} min to amin ₁ .	
793	Columns 5 to 7, the percentage contribution of each manganese species towards total manganese (Mn_{T}).	

	Mn(III)-L	Mn(III)-L	_{oxi} Mn /	Mn(II)	Mn(III)-L _{DFOB}	MnO_x
Depth (m)	in dMn _T	in _{oxi} Mn	/dMn _T	in Mn _T	in Mn _T	in Mn _T
Station A1 (.	37 07.84 N, 0 [°]					
10	0.2	3.8	4‡	96	0.2	3.8
74	7	20	36	72	6	22
154	3	21	14	87	3	10
225	6	16	39	71	4	25
402	11	43	26	77	10	13
698	7	33	20	82	6	12
Station A2 (37 18.45 N, 0 [°]	73 23.79 W)				
5	0.7	8	9 [‡]	91	1	8
152	5	14	33	74	4	22
256	0.0	0.1	18	85	0	15
325	0.5	5	10	91	1	8
525	5	34	15	86	5	9
825	5	23	22	81	4	15
2032	13	49	27	76	12	12
Station B1 (3	38 17.40 N, 0 [°]	72 43.70 W)				
11	3	18	17‡	85	3	12
44	6	31	19 [‡]	83	5	12
63	14	36	38	69	11	20
98	20	38	52	61	15	24
194	13	22	60	59	9	32
282	13	24	53	62	9	29
371	21	62	34	70	19	11
448	53	22	238‡	17	18	65
599	16	36	46	64	13	23
1201	23	45	51	60	18	22
2004	19	60	32	72	17	11
2602	3	17	16 [‡]	85	3	12
Station B2 (3	38 14.96 N, O	72 45.27 W)				
10	6	18	34‡	74	4	22
34	12	74	17 [‡]	84	12	4
95	22	24	92	46	13	41
196	23	40	58	57	17	26
274	37	15	67	49	28	23
449	37	55	251 [‡]	20	12	68

^{*} External forcings control manganese cycling in these waters; photochemistry in near-surface waters (< 50 m) and nepheloid layer(s) in the bottom water, or these waters had a significant presence of MnO_x indicating a likely presence of microbial manganese oxidizers.

798

Figure 1. Bathymetry map of the mid-Atlantic Bight (USA east coast) showing sampling station

800 locations for this study (Stations A & B; pink stars) and those referenced in the discussions

801 [GEOTRACES Winter 2011 (USGT11; orange circles), and Oldham et al. (2020) (OLH; black stars)].

802 Inset, map of North and South America with black rectangle highlighting the sampling region. Station

803 A sampled in August 2013 and Station B in August 2014.

804

805

- 807
- 808
- 809

810

Figure 2. Station A depth profiles for physicochemical parameters and manganese speciation,

- 812 manganese(II), Mn(III)-L_{DFOB} and MnO_x , in Northwest Atlantic offshore waters. The second station
- 813 (A2) was intended as a repeat profile through that location's oxygen minimum zone.
- 814
- 815
- 816
- 817
- 818

820 Figure 3. Station B depth profiles for physicochemical parameters and manganese speciation,

821 manganese(II), Mn(III)- L_{DFOB} and MnO_x , in Northwest Atlantic offshore waters. The second station 822 (B2) was intended as a repeat profile through that location's oxygen minimum zone.

- 823
- 824
- 825
- 826
- 827
- 828

Figure 4. From left to right, 1) Station A depth profiles of the manganese pools, total dissolved manganese ($dMn_T = manganese(II) + Mn(III)-L_{DFOB}$) and oxidized manganese ($_{oxi}Mn$), composed of soluble Mn(III)-L_{DFOB} and particulate MnO_x . 2) Profiles of the percentage contributions of Mn(III)-L_{DFOB} within _{oxi}Mn and dMn_T (Table 2). 3) Profiles of the contribution of each manganese species to the total bio-available manganese (Mn_T) and 4) profiles of the relative percentage contribution of manganese species within Mn_T in Northwest Atlantic offshore waters (Table 2). Total bio-available manganese concentration (manganese, nM) is presented on a logarithmic (base 2) scale. The second station (A2) was intended as a repeat profile through the oxygen minimum zone.

Figure 5. From left to right, 1) Station B depth profiles of the manganese pools, total dissolved manganese ($dMn_T = manganese(II) + Mn(III)-L_{DFOB}$) and oxidized manganese ($_{oxi}Mn$), composed of soluble Mn(III)-L_{DFOB} and particulate MnO_x. 2) Profiles of the percentage contributions of Mn(III)-LDFOB within oxiMn and dMnT (Table 2). 3) Profiles (Table 1) of the contribution of each manganese species to the total bio-available manganese (Mn_T) and 4) profiles of the relative percentage contribution of manganese species within Mn_T in Northwest Atlantic offshore waters (Table 2). Total bio-available manganese concentration (manganese, nM) is presented on a logarithmic (base 2) scale. The second station (B2) was intended as a repeat profile through the oxygen minimum zone.

859

Figure 6. Mean monthly surface chlorophyll concentrations at Stations A1, A2 and B, taken from

862 National Oceanographic and Atmospheric Administration (NOAA) VIIRS level 3 satellite data. Vertical

black lines show occurrence of sampling in August 2013 (Stations A1 and A2) and 2014 (Station B).

